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The main ideas of path following by predictor—corrector and piecewise-linear
methods, and their application in the direction of homotopy methods and non-
linear eigenvalue problems are reviewed. Further new applications to areas
such as polynomial systems of equations, linear eigenvalue problems, interior
methods for linear programming, parametric programming and complex bi-
furcation are surveyed. Complexity issues and available software are also
discussed.
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1. Introduction

Continuation, embedding or homotopy methods have long served as useful
theoretical tools in modern mathematics. Their use can be traced back at
least to such venerated works as those of Poincaré (1881-1886), Klein (1882—
1883) and Bernstein (1910). Leray and Schauder (1934) refined the tool and
presented it as a global result in topology, viz. the homotopy invariance of
degree. The use of deformations to solve nonlinear systems of equations
may be traced back at least to Lahaye (1934). The classical embedding
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methods were the first deformation methods to be numerically implemented
and may be regarded as a forerunner of the predictor—corrector methods for
path following which we will discuss here.

Because of their versatility and robustness, numerical continuation or path
following methods have now been finding ever wider use in scientific applica-
tions. Our aim here is to present some of the recent advances in this subject
regarding new adaptations, applications, and analysis of efficiency and com-
plexity. To make the discussion relatively self-contained, we review some
of the background of numerical continuation methods. Introductions into
aspects of the subject may be found in the books by Garcia and Zangwill
(1981), Gould and Tolle (1983), Keller (1987), Rheinboldt (1986), Seydel
(1988) and Todd (1976a). The philosophy and notation of the present arti-
cle will be that of our book Allgower and Georg (1990), which also contains
an extensive bibliography up to 1990.

The viewpoint which will be adopted here is that numerical continuation
methods are techniques for numerically approximating a solution curve c
which is implicitly defined by an underdetermined system of equations. In
the literature of numerical analysis, the terms numerical continuation and
path following are used interchangeably.

There are various objectives for which the numerical approximation of ¢
can be used and, depending upon the objective, the approximating technique
is adapted accordingly. In fact, continuation is a unifying concept, under
which various numerical methods may be subsumed which may otherwise
have very little in common. For example, simplicial fixed point methods
for solving problems in mathematical economics, the generation of bifurca-
tion diagrams of nonlinear eigenvalue problems involving partial differential
equations, and the recently developed interior point methods for solving lin-
ear programming problems seem to be quite unrelated. Nevertheless, there
is some benefit in considering them as special cases of path following. We
personally are struck by the remarkable fact that a technique which was ini-
tially developed for solving difficult nonlinear problems now turns out to be
extremely useful for treating various problems which are essentially linear:
e.g. linear eigenvalue problems, and linear programming and complementar-
ity problems.

The remainder of the article is organized as follows. Section 2 contains
the basic ideas of predictor—corrector path following methods. In Section 3
some technical aspects of implementing predictor—corrector methods are ad-
dressed, e.g. the numerical linear algebra involved and steplength strategies.

Section 4 deals with various applications of path following methods. We
begin with a brief discussion of homotopy methods for fixed point problems
and global Newton methods. Then we address the problem of finding multi-
ple solutions. In particular, we discuss recent homotopy methods for finding
all solutions of polynomial systems of equations. Next we survey some path
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following aspects of nonlinear eigenvalue problems, and address the question
of handling bifurcations. Finally, three new developments in path following
are discussed: (1) The solution of linear eigenvalue problems via special ho-
motopy approaches; (2) the handling of parametric programming problems
by following certain branches of critical points via active set strategies; and
(3) the path following aspects involved in the interior point methods for
solving linear and quadratic programming problems.

Section 5 presents an introduction to the principles of piecewise linear
methods. These methods view path following in a different light: instead of
approximately following a smooth solution curve, they exactly follow an ap-
proximate curve (i.e. a polygonal path). Some instances where these meth-
ods are useful are discussed, e.g. linear complementarity problems or homo-
topy methods where predictor—corrector methods are not implementable,
because of lack of smoothness. We also briefly address the related topic of
approximating implicitly defined surfaces.

The issue of the computational complexity of path following is considered
in Section 6. This issue is related to the Newton—Kantorovich theory and is
currently of considerable interest in the context of interior point methods.

We conclude by listing some available software related to path following
and indicate how the reader might access these codes. No attempt to com-
pare or evaluate the various codes is offered. In any case, our opinion is that
path following codes always need to be considerably adapted to the special
purposes for which they are designed. The path following literature offers
various tools for accomplishing such tasks. Although there are some general
purpose codes, probably none will slay every dragon.

The extensive bibliography contains only cited items. Space considera-
tions prohibited the addressing of some important topics, and consequently
some significant recent contributions to the field are not contained in the
bibliography.

2. The basics of predictor—corrector path following

The simplest (and most frequently occurring) case of an underdetermined
system of nonlinear equations contains just one degree of freedom:

H(u) = 0 where H : RV*! — R" is a smooth map. (2.1)

When we say that a map is smooth we shall mean that it has as many
continuous derivatives as the context of the discussion requires. For conve-
nience, the reader may assume C'*°. In order to apply the Implicit Function
Theorem, we need the following standard

Definition 2.1 We call u a regular point of H if the Jacobian H'(u) has
maximal rank. We call y a regular value of H if u is a regular point of
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H whenever H(u) = y. If a point or value is not regular, then it is called
singular.

Let ug € RV*! be a regular point of H such that H(ug) = 0. It follows
from the Implicit Function Theorem that the solution set H ~!(0) can be
locally parametrized about ug with respect to some coordinate. By a re-
parametrization (according to arclength), we obtain a smooth curve ¢ : J —
RN*! for some open interval J containing zero such that for all s € J:

¢(0) =ug (2.2)
H'(c(s))é(s) = 0, (2.3)
el =1, (24)
H'(c(s))
det ( s ) > 0. (2.5)
These conditions uniquely determine the tangent ¢(s). Here and in the fol-
lowing, (.)* denotes the Hermitian transpose and || .|| the Euclidean norm.

Condition (2.4) normalizes the parametrization to arclength. This is only
for theoretical convenience, and it is not an intrinsic restriction. Condition
(2.5) chooses one of the two possible orientations.

The preceding discussion motivates the following

Definition 2.2 Let A be an (N,N+1)-matrix with maximal rank. For
the purpose of our exposition, the unique vector ¢t(A4) € RV satisfying the
conditions

At =0, (2.6)
1t = 1, (2.7)
det( ;‘} ) > 0, (2.8)

will be called the tangent vector induced by A.

Making use of this definition, solution curve ¢(s) is characterized as the
solution of the initial value problem

w=1t(H'(u)), u(0)=muo (2.9)

which in this context is occasionally attributed to Davidenko (1953), see
also Branin (1972). Note that the domain {u € RN*! : 4 is a regular point}
is open. This differential equation is not used in efficient path following
algorithms, but it serves as a useful device in analysing the path. Two
examples are:

Lemma 2.3 Let (a,b) be the maximal interval of existence for (2.9). If a
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is finite, then c(s) converges to a singular zero point of H as s — a, s > a.
An analogous statement holds if b is finite.

Lemma 2.4 Let zero be a regular value of H. Then the solution curve ¢
is defined on the real line and satisfies one of the following two conditions:

1. The curve c is diffeomorphic to a circle. More precisely, there is a
period T > 0 such that c(s1) = ¢(s2) if and only if s; — s2 is an integer
multiple of T'.

2. The curve c is diffeomorphic to the real line. More precisely, c is injec-
tive, and c(s) has no accumulation point for s — too.

See (2.1.13) and (2.1.14) in Allgower and Georg (1990) for proofs. A more
topological and global treatment of the Implicit Function Theorem can be
found in the books of Hirsch (1976) or Milnor (1969).

Since the solution curve c is characterized by the initial value problem
(2.9), it is evident that the numerical methods for solving initial value prob-
lems could immediately be used to numerically trace c. However, in general
this is not an efficient approach, since it ignores the contractive proper-
ties which the curve ¢ has in view of the fact that it satisfies the equation
H(u) = 0. Instead, a typical path following method consists of a succession
of two different steps:

Predictor step. An approximate step along the curve, usually in the gen-
eral direction of the tangent of the curve. The initial value problem
(2.9) provides motivation for generating predictor steps in the spirit of
the technology of numerical solution of initial value problems.

Corrector steps. One or more iterative steps which aim to bring the pre-
dicted point back to the curve by an iterative procedure (typically of
Newton or gradient type) for solving H(u) = 0.

It is usual to call such procedures predictor-corrector path following meth-
ods. However, let us note that this name should not be confused with the
predictor—corrector multistep methods for initial value problems, since the
latter do not converge back to the solution curve.

The following pseudocode (in MATLAB format) shows the basic steps of a
generic predictor—corrector method.

Algorithm 2.5 u = generic_pc_method(u, h)

% ue RVt such that H(u) ~ 0 is an initial point, input
% h > 0 is an initial steplength, input
WHILE a stopping criterion is not met
% predictor step
predict v such that H(v) ~ 0 and |[u —v|| = h
and v — u points in the direction of traversing



6 E. ALLGOWER AND K. GEORG

% corrector step

let w € RV*! approximately solve ...
min { o - wl : H(w) = 0}

% new point along H=*(0)
Uu=w

% steplength adaptation
choose a new steplength h > 0

END

The predictor—corrector type of algorithms for curve following seem to
date to Haselgrove (1961). In contrast to the modern predictor—corrector
methods, the classical embedding methods assume that the solution path is
parametrized with respect to an explicit parameter which is identified with
the last variable in H. Hence, we consider the equation (2.1) in the form

H(z,\) = 0. (2.10)

If we assume that the partial derivative H;(x, A) does not vanish, then the
solution curve can be parametrized in the form (z(A), A). This assumption
has the drawback that folds are excluded, i.e. points such that H(z,\) =0
and H;(z,\) = 0. Such points are sometimes called turning points in the
literature. The assumption has, however, the advantage that the corrector
steps can be more easily handled, in particular if the partial derivative of
H with respect to z is sparse. In some applications it is known a prior:
that no folds are present, and then the embedding method is applicable. For
purposes of illustration we present an analogous generic embedding method:

Algorithm 2.6 =z = generic_embedding-method(z, A, k)

% (z,A) € RN such that H(x,A) ~ 0 is an initial point, input
% h >0 is an initial steplength, input
WHILE a stopping criterion is not met
let y € RN approximately solve H(y, A+ h) =0
() = (y,A+h)
choose a new steplength A > 0
END

The predictor step is hidden; the predictor point would correspond to the
starting point of an iterative method for solving H(y, A + h) = 0. The most
commonly used starting point is the previous point z.

It is common to blend aspects of these two algorithms. A simple example
is to use a predictor tangent to the curve (z()), ) in the embedding algo-
rithm. A more sophisticated example is the use of the bordering algorithm
introduced in Keller (1977, 1983) in the corrector phase of the predictor—
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corrector method. To avoid dealing with the arclength parameter, one can
adopt a strategy of parameter switching, see, e.g., Rheinboldt (1980, 1981).

3. Aspects of implementations

Let us now turn to some of the practical aspects of implementing a predictor—
corrector method.

3.1. Newton steps as corrector

A straightforward way of approximating a solution of the minimization prob-
lem in the predictor—corrector method (2.5) is given by the Newton step

Ny (v) :=v — H'(v)TH(v), (3.1)

where H'(v)™ denotes the Moore—Penrose inverse of H'(v), see, e.g., Golub
and van Loan (1989). Very commonly, an Euler predictor, i.e. a predictor
step in the direction of the tangent to the curve is used:

v = u + ht(H'(u)), (3.2)

where h > 0 represents the current stepsize.

The following algorithm sketches one version of the predictor—corrector
method incorporating an approximate Euler predictor and one Newton-type
iteration as a corrector step.

Algorithm 3.1 u = Euler_Newton(u, h)

WHILE a stopping criterion is not met
approximate A ~ H'(u)
v = u + ht(A) % predictor step
u=v— A+H('U) % corrector step
choose a new steplength h > 0

END

Discussions of Newton’s method using the Moore-Penrose inverse can be
found in several text books, e.g. Ortega and Rheinboldt (1970) or Ben-Israel
and Greville (1974).

Let us first state a convergence result, see (5.2.1) in Allgower and Georg
(1990), which ensures that this algorithm safely follows the solution curve
under reasonable assumptions.

Theorem 3.2 Let H : R¥*! — RM be a smooth map having zero as
a regular value and let H(up) = 0. Denote by cp(s) the polygonal path,
starting at ug, going through all points u generated by Algorithm 3.1 with
fixed steplength h > 0. Denote by c(s) the corresponding curve in H ~1(0)
given by the initial value problem (2.9). For definiteness, we assume that
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cp(0) = ¢(0) = up, and that both curves are parametrized with respect to
arclength. If the estimate ||[A — H'(u)|| = O(h) holds uniformly for the
approximation in the loop of the algorithm, then the following quadratic
bounds hold uniformly for 0 < s < sg and sq sufficiently small:

IH (cn()I < O(R?), llen(s) — c(s)ll < O(R?).
Some major points which remain to be clarified are:

— How do we efficiently handle the numerical linear algebra involved in
the calculation of {(A) and A+ H(v)?

— How do we formulate efficient steplength strategies?
8.2. The numerical linear algebra involved

A straightforward and simple (but not the most efficient) way to handle the
numerical linear algebra would be to use a QR factorization:

a=q( ) (33

where Q is an (N + 1, N + 1) orthogonal matrix, and R is a nonsingular
(N, N) upper triangular matrix. We assume that A is an (N, N + 1) matrix
with maximal rank. If ¢ denotes the last column of @Q, then t(A) = ogq,
where the orientation defined in (2.5) leads to the choice

o= sign(det Q det R) . (3.4)

Hence o is easy to determine. The Moore-Penrose inverse of A can be
obtained from the same decomposition in the following way:

*)—1
A = A*(AA")1=Q ( (ROZ ) . (3.5)
Similar ideas apply if an LU decomposition is given:
PA*:L(é{), (3.6)

where L is a lower triangular (N + 1, N + 1) matrix, U is an (N, N) upper
triangular matrix, and P is a permutation matrix corresponding to partial
pivoting which is, in general, necessary to improve the numerical stability.
Let us first consider the calculation of ¢t(A). If y denotes the last column of
P*(L*)~!, then

t(A) = oy/|lyll, where o = sign(detP det L det U). (3.7)

The Moore-Penrose inverse is obtained by

A* = (I — t{A)H(A)") (L)1 ( (U(;B_l ) . (3.8)
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Hence, a calculation of w = A"z amounts to essentially one forward-solving
with U*, one back-solving with L*, and one scalar product with ¢(A4).

These methods are useful for small dense matrices A. However, in many
applications of path following methods, the corresponding matrix A is large
and sparse, and then this procedure is inefficient. Among such applications
are the approximation of branches of nonlinear eigenvalue problems or the
central path methods of linear and nonlinear programming. Let us point
out some ideas which are useful in dealing with such situations.

In many applications, one encounters matrices A with the following struc-
ture:

A=(L b), (3.9)

where equations of the form Lz = y permit a fast linear solver. If ( ¢* d)
denotes an additional row (typically generated via the last predictor direc-
tion), then a standard block elimination may be employed via the Schur
complement.
Lemma 3.3 Let

s=d-c' L'

denote the Schur complement of L in the augmented matrix
< L b
i=(L ),

det A = det L det s. (3.10)

Then

Furthermore, if Ais nonsingular, then
A1l= L1+ L=bs71e*L7t —L~1ps™1
- —s71lex1 s~1 )
As an easy consequence, the tangent t(A) is obtained via

t(A) = ay/llyll, (3.11)

where y denotes the last column of A~!. The sign o € {1} can either be
obtained from an angle test with the previous predictor direction or from
(3.10), since it can be shown that

o= sign( det L det s). (3.12)

Note that the computational expense of determining ¢(A) is roughly one
application of the fast solver and a scalar product.
The Moore—Penrose inverse is obtained via

A* = (I~ t(A)HA)) (A )y, (3.13)
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where (A1), denotes the submatrix consisting of the first N columns of
A1, Hence, a calculation of w = A1z amounts to essentially one additional
call of the fast solver and two additional scalar products.

Among the fast solvers which are of importance here are direct solvers for
sparse linear systems, or preconditioned iterative solvers such as conjugate-
gradient or other Krylov methods, see, e.g., Freund, Golub and Nachtigal
(1992).

This Schur complement construction is also valid if b, ¢ and d are ma-
trices (of appropriate size). This is of interest in parametric optimization,
see Lundberg and Poore (1993). Watson (1986) and deSa, Irani, Ribbens,
Watson and Walker (1992) discuss some numerical linear algebra aspects in
the context of path following.

The popular bordering algorithm of Keller (1977), see also Chan (1984a),
Keller (1983), Menzel and Schwetlick (1978, 1985), is related to these ideas.
These approaches are akin to Keller’s pseudo arclength method, in which the
equation H(v) = 0 is extended by an additional parametrization condition
N (u,v,h) = 0 which is at least transversal to H(v) = 0 for small h, and
often models an approximate arclength parametrization. This viewpoint is
often convenient, in particular for structured problems.

3.3. Step length control and higher order predictors

The convergence considerations of Theorem 3.2 were carried out under the
assumption that the steplength of the Algorithm 3.1 was uniformly con-
stant throughout. This assumption is also typical for complexity studies,
see Section 6. Such an approach is inefficient for any practical implementa-
tion. An efficient algorithm needs to incorporate an automatic strategy for
controlling the steplength. In this respect the predictor—corrector methods
are similar to the methods for numerically integrating initial value problems
in ordinary differential equations. To some extent, the steplength strategy
depends upon the accuracy with which it is desired to numerically trace a
solution curve. Path following methods usually split into two categories:

— either the solution curve is to be approximated with some given accu-
racy, e.g. for plotting purposes; or

— the objective is just to safely follow the curve as fast as possible, until a
certain point is reached, e.g. a zero point or critical point with respect
to some additional functional defined on the curve.

We briefly sketch some ideas which are used to adjust the steplength.

Steplength control via error models. One method, due to Den Heijer
and Rheinboldt (1981), is based upon an error model for the corrector it-
eration. For Newton corrector steps, such error models can be obtained by
analysing the Newton-Kantorovich theory. The steplength is controlled by
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the number of steps which are taken in the corrector iteration until a given
stopping criterion is fulfilled.

We sketch a somewhat modified and simplified version of this steplength
strategy. Let us assume that u is a point on the solution curve, and consider,
for simplicity, an Euler predictor vg(h) = u + ht(H'(u)). Let vo(h), vi(h),

.., Ug(h) be an iterative corrector process for approximating the nearest
point to vg(h) on the curve. Suppose a certain stopping criterion is met
after k iterations. The exact nature of the criterion is not important in this
context. We assume theoretical convergence to v (h).

It is assumed that there exists a constant v > 0 (which is independent of
h) such that the modified error

€i(h) = 7l|veo(h) — vi(h)||
satisfies inequalities of the following type
gi+1(h) < ¥(ei(h)),

where 1 : R — R is a known monotone function such that (0) = 0. For ex-
ample, if Newton’s method is employed, Den Heijer and Rheinboldt suggest
two models:

2
€
= — <e< .
P(e) 35 0<e<], (3.14)
€+ 10—52 2

We may evaluate a posteriori the quotient

w(h) = o (h) — vk (W] voo(h) — w1 (A)]| _ ex-1(h)
vk (R) — vo(R)|l |voo () — vo(R)]| zo(h)

Using the estimate £5_1(h) < ¥*~1(go(h)), we obtain
k-1
w(h) < ¥ (eo(h))

~  eo(h)
This motivates taking the solution € of the equation
k-1

as an estimate for o(h). )

We now try to choose the steplength h so that the corrector process satis-
fies the stopping criterion after a chosen number (say k) of iterations. Such
a steplength leads to the modified error o(h). Hence, we want the modified
error €;(h) after k iterations to be so small that the stopping criterion is

satisfied. Using the inequality e ,;(fz) < 1/1’.° (e0(R)), we accept the solution &
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of the equation
¥ (e) = ¥H(eo(h))
as an estimate for £9(h). Now we use the asymptotic expansion
llvo (k) = vo(R)]l = Ch? + O(h?)
to obtain the approximation
( h ) go(h)
h eo(h)’

which can be used to determine h. This steplength & will now be used
in the next predictor step. It is usually safeguarded by some additional
considerations such as limiting the steplength to some interval hpj, < h <
hmax, or limiting the factor 0.5 < h/h < 2, etc.

Steplength control via asymptotic expansion. Another method, based
upon asymptotic estimates in the mentality of initial value solvers, is due
to Georg (1983). The basic idea in this approach is to observe the perfor-
mance of the corrector procedure and then to adapt the steplength A > 0
accordingly. More precisely, suppose that a point u on the solution curve
has been approximated. Suppose further that a steplength h > 0 and a
predictor point are given. Then a Newton-type iterative corrector process
is performed which converges to the next point z(h) on the curve.

The steplength strategy is motivated by the following question: Given the
performance of the corrector process, which steplength h would have been
‘best’ for obtaining z(h) from u? This ‘ideal’ steplength % is determined
via asymptotic estimates, and it is then taken as the steplength for the
next predictor step. This strategy depends primarily upon two factors: the
particular predictor—corrector method being utilized, and the criteria used
in deciding what performance is considered ‘best’.

Let us illustrate this technique in the case of the following algorithm (cf.
Algorithm 3.1):

Algorithm 3.4 u = Euler Newton_it(u, h)
WHILE a stopping criterion is not met

v=u+ ht(H'(u)) % predictor step

A= H'(v)

WHILE a convergence criterion is not met
V=V - A"‘H(v) % corrector step

END

u=7v

choose a new steplength h > 0
END
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If v(h) = u + ht(H'(u)) denotes the predictor step depending on the
steplength h, then the first corrector point is given by
w(h) := v(h) — H'(v(h))" H(v(h)).
Let us call the quotient of the first two successive Newton steps
_ I (v(h) " H(w(h))|
w(u, h) = T— -
|1 H' (v(h))" H(v(R)]l
the contraction rate of the corrector process. Since Newton’s method is
locally quadratically convergent, it is plain that x(u,h) will decrease (and
hence Newton’s method will become faster) as h decreases. The following

lemma characterizes the asymptotic behaviour of k(u, h) with respect to h,
see (6.1.2) in Allgower and Georg (1990).

Lemma 3.5 Suppose that
H"(w)[t(H'(w)), t(H'(u))] # 0
(i.e. the curve has nonzero curvature at u), then
K(u, h) = ka(u)h? + O(h?)

for some constant ko(u) > 0 which is independent of A and depends smoothly
on u.

In view of this asymptotic relation, the steplength modification A — h
is now easy to explain. Assume that an Euler-Newton step has been per-
formed with steplength h. Then H'(v(h))* H(v(h)) and H'(v(h))* H(w(h))
will have been calculated and thus x(u,h) can be obtained without any
significant additional cost. Now an a posteriori estimate

w(u
K’2(u) = ( h;h)

+O(h)

is available.

In order to have a robust and efficient method we want to continually
adapt the steplength h so that a nominal prescribed contraction rate &
is maintained. The choice of & will generally depend upon the nature of
the problem at hand, and on the desired security with which we want to
traverse the curve. That is, the smaller & is chosen, the greater will be the
security with which the method will follow the curve. When using the term
securely or safely following the curve we mean that a safeguard prevents
the method from jumping to a different part of the curve (at a significantly
different arclength value) or to a different connected component of H ~1(0).
Depending on the structure of the solution manifold H ~!(0), this may be
an important issue.
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Once & has been chosen, we will consider a steplength h to be appropriate
if k(u,h) = K. By using the above equation and neglecting higher order
terms we obtain the formula

. K
S iows
as the steplength for the next predictor step.

In a similar way, other quantities which are important for the performance
of the path following method can be taken into account, e.g. the angle of two
successive predictor directions, the size of the first Newton step (which gives
an approximation of the distance of the predictor point to the curve) or the
function value H(v(h)). All these quantities admit asymptotic expansions
in h (with varying order). For example, Algorithm 6.1.10 and Program 1
in Allgower and Georg (1990) incorporates such features in the steplength
strategy.

Kearfott (1989) proposes interval arithmetic techniques to determine a
first order predictor which stresses secure path following, see also Kearfott
(1990).

The steplength strategies we have discussed up to now have been based
upon the Euler predictor, which is only of local order two. This is very often
satisfactory since it is usually used in conjunction with rapidly converging
correctors such as Newton-type correctors. However, for large systems, often
less rapidly convergent iterative methods such as conjugate gradient steps
are used. Hence, at least in some cases, one may expect to obtain improved
efficiency by using variable order predictors and formulating corresponding
steplength strategies. Such strategies could be similar to the ones used in
multistep methods for solving initial value problems, see, e.g., Shampine
and Gordon (1975). Georg (1982), suggested such a method, see also Georg
(1983). Lundberg and Poore (1991) have made an implementation using
variable order Adams—Bashforth predictors. Their numerical results show
that there is often a definite benefit to be derived by using higher order
predictors.

Inexpensive higher order predictors are generally based on polynomial
interpolation. In view of the stability of Newton’s method as a corrector,
it may be advantageous to use more stable predictors. Mackens (1989) has
proposed such predictors which are based on Taylor’s formula and which
are obtained by successive numerical differentiation in a clever way, see also
Schwetlick and Cleve (1987) as a predecessor. However, the gain in stability
has to be paid for by additional evaluations of the map H and additional
applications of the Moore-Penrose inverse of the Jacobian H' (where it may
be assumed that H’ has already been decomposed).

Let us sketch a general philosophy for higher order predictors which may
be useful for implementations. Let u be a point on the solution curve ¢ such
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that ¢(s) = u. Consider a polynomial predictor of the form

k

c(s+h) = pe(h) =u+)_ ch’, (3.16)
i=1

o)

G = , (3.17)

i!
which represents an approximation of the Taylor formula. We see essentially
two different ways for obtaining the coefficients ¢;: (1) by divided differences
or polynomial interpolation making use of previously calculated points on
the curve; and (2) by successive numerical differentiation at u. The former
is less expensive to calculate, but the latter is more accurate.

We sketch one possible way of determining the next steplength and the
next order in the predictor. Let € > 0 be a given tolerance. The term ||cx[|A*
can be viewed as a rough estimate for the truncation error of the predictor

pr—1(h). Hence, we estimate
1/k
5
- (52)
lekll

as the steplength for the predictor px—; in order to remain within the given
tolerance. Due to instabilities of various kinds, we anticipate that

h2<h3"'<hq2hq+1

will hold for some g. Hence, the predictor p,_; with steplength h, is our
next choice.

This idea can be implemented and modified in various ways, and needs
some stabilizing safeguards, such as setting a maximum increase in step-
length and in the order. The strategy to be developed depends on the
objective of the application at hand.

4. Applications

In this section we present a selection of applications of path following meth-
ods. Many more specific examples exist in the literature, some of them are
referred to later. Our discussion of applications concentrates to a large ex-
tent on cases in which the predictor—corrector methods apply. Applications
in which the dimension is relatively low and smoothness does not hold can
be handled by the piecewise-linear methods discussed in Section 5.

In many applications of the numerical homotopy methods, it is possible to
avoid degeneracies in the solution curve by introducing suitable parameters
(perturbations). The theoretical basis of this approach lies in Sard’s theorem
for maps with additional parameters, see, e.g., Abraham and Robbin (1967)
or Hirsch (1976). Yomdin (1990) has given a version of Sard’s theorem which
is adapted for numerical purposes. We consider the following general form:
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Theorem 4.1. (Sard) Let A, B, C be smooth manifolds of finite dimen-
sions with dim A > dim C, and let FF : A x B — C be a smooth map.
Assume that ¢ € C is a regular value of F, i.e. for F(a,b) = ¢ we have that
the total derivative F'(a,b) : T,Ax Ty B — T.C has maximal rank. Here T, A
denotes the tangent space of A at a, etc. Then for almost all b € B (in the
sense of some Lebesgue measure on B) the restricted map F(-,b): A - C
has c as a regular value.

4.1. Fized point problems

To illustrate the use of Sard’s theorem, let us consider a homotopy arising
from a fixed point problem. Let f : RY — RY be a smooth map which is
bounded. According to the theorem of Brouwer (1912), the map f has at
least one fixed point. To simplify the discussion, let us make the assumption
that the map = — z — f(z) has zero as a regular value. This implies that
the fixed points of f are isolated, and that Newton’s method converges
locally. However, the global convergence of Newton’s method is by no means
guaranteed.
We therefore consider the homotopy

H(l‘,/\,p)=l‘—p—/\(f(.’l,')—p). (41)

For the trivial level A = 0, we obtain the trivial map H(z,0,p) =z —p
which has the unique zero point p, our starting point. On the target level
A =1, we obtain the target map H(z,1,p) = = — f(z) whose zero points are
our points of interest, i.e. the fixed points of f.

Let us illustrate by this example how Sard’s theorem is typically employed:
The Jacobian of H is given by

H/(l‘a ’\7p) = (Id - ’\fl(x)vp - f(z)v (’\ - l)Id)

The first N columns of the Jacobian are linearly independent for H(z, A, p) =
0 and A = 1 due to our assumptions, and clearly the last N columns are
linearly independent for A # 1. Consequently, by Sard’s theorem we can
conclude that for almost all p € R™V (in the sense of N-dimensional Lebesgue
measure) zero is a regular value of the restricted map H(-, -,p).

For such a generic choice of p, the solution manifold H(-, -,p) ~1(0) con-
sists of smooth curves which are either diffeomorphic to the circle or to the
real line, see Lemma 2.4. Consider the solution curve c(s) = (z(s), A(s))
(parametrized for convenience with respect to arclength) such that ¢(0) =
(p,0). It is easy to see that the initial tangent vector in the direction of
increasing A has the form

o) = 1+ 15 - pIH 2 (TP,

and hence the curve is transversal to the plane A = 0.
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Since the solution point (p,0) is unique for A = 0, it follows that c is
diffeomorphic to the real line. Furthermore, the boundedness of f implies
that z(s) is bounded for 0 < A(s) < 1. It follows that the curve ¢ reaches
the level A = 1 after a finite arclength sy, i.e. ¢(sp) = (o, 1), and hence z;
is a fixed point of f which can be approximated by tracing the curve c.

Let us note that

(Id ~ f(z0))&(s0) = A(s0)(f(0) ~ p),

and our earlier assumption on f implies that (Id — f'(x)) cannot have a
nontrivial kernel, and hence A(sg) # 0, i.e. the curve c is tranversal to the
level A =1 at any solution.

This discussion is in the spirit of Chow, Mallet-Paret and Yorke (1978).
An earlier approach based on the nonretraction principle of Hirsch (1963)
was given by Kellogg, Li and Yorke (1976). General discussions concerning
the correspondence between degree arguments and numerical continuation
algorithms have been given in Alexander and Yorke (1978), Garcia and
Zangwill (1979a, 1981) and Peitgen (1982). Since the appearance of the
constructive proofs of the Brouwer fixed point theorem many other con-
structive existence proofs have been described. Further references may be
found in Section 11.1 of Allgower and Georg (1990).

Watson and collaborators have given a great number of engineering ap-
plications where an implementation (HOMPACK) of this homotopy method
has been employed. As examples, we mention Arun, Reinholtz and Watson
(1990), Melville, Trajkovic, Fang and Watson (1990), Vasudevan, Lutze and
Watson (1990), Watson (1981), Watson, Li and Wang (1978), Watson and
Wang (1981) and Watson and Yang (1980).

4.2. Global Newton methods

Newton’s method is a popular method for numerically calculating a zero
point of a smooth map G : RN — RM. As is well known, this method may
diverge if the starting point p is not sufficiently near to a zero point Z of G.
Often one would like to determine whether a certain open bounded region
Q C RY contains a zero point Z of G and furthermore, for which starting
values p this solution Z can be obtained by Newton’s method. The so-called
global Newton methods offer a possibility of answering such questions.

One may interpret Newton’s method as the numerical integration of the
differential equation

& = -G'(z)"'G(z)

using Euler’s method with unit step size. The idea of using this flow to
find zero points of G was exploited by Branin (1972). Smale (1976) gave
conditions on 9€? under which the flow leads to a zero point of G in Q.
Such numerical methods have been referred to as global Newton methods.
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Keller (1978) observed that this flow can also be obtained in a numerically
stable way from a homotopy equation which he consequently named the
global homotopy method. Independently, Garcia and Gould (1978, 1980)
discussed this flow.

We briefly sketch Keller’s approach. The global homotopy method in-
volves tracing the curve defined by the equation G(z) — (1 — A\)G(p) = 0
starting from (z,A) = (p,0) € 92 x {0} inward into 2 x R. If the level
2 x {1} is encountered, then a zero point of G has been found.

We consider Smale’s assumption.

Assumption 4.2 Let the following conditions be satisfied:

1. Q C R" is open and bounded and 52 is a connected smooth submani-
fold of RY;

zero is a regular value of G

. G(p) # 0 for p € 0%,

. the Jacobian G’(p) is nonsingular for p € 9Q;

. the Newton direction —G’(p)~1G(p) is not tangent to € at p.

The global homotopy H : RN x R x 8Q — RY is defined by
H(z, A, p) := G(z) — (1 - N)G(p).

Since p varies over the (N — 1)-dimensional surface 01, it is somewhat
difficult to apply Sard’s theorem. This task was achieved by Percell (1980).
Hence, for almost all p € 9Q the global homotopy has 0 as a regular value.

Let p be such a generic choice. We consider again the solution curve
c(s) = (z(s), A(s)) in H(-, -,p)~1(0) such that c(0) = (p,0) and %(0) points
into Q. Keller (1978) showed that the curve hits the target level Q x {1}
in an odd number of points. This possibility of obtaining more than one
solution was first observed by Branin and Hoo (1972).

Given the conditions 1 and 2 of assumption 4.2, the boundary condi-
tions 3-5 can be shown to hold for a sufficiently small ball  around a zero
point of G. Thus, in a certain sense the global homotopy extends the well
known Newton—Kantorovich-type theorems concerning the local convergence
of Newton’s method, see, e.g., Ortega and Rheinboldt (1970).

4.8. Multiple solutions

In the previous section it was observed that the global homotopy method
might actually yield more than one zero point of the map G in a bounded
region . This raises the question as to whether one might be able to
compute more zero points of G in Q in addition to those which lie on the
global homotopy path. To be more precise, let us suppose that & C R¥ is
an open bounded region, and that G : RN — RN is a smooth map having a
zero point zg € . The task is now to find additional zero points of G in ,



CONTINUATION AND PATH FOLLOWING 19

provided they exist. One method which has often been used for handling this
problem is deflation, see, e.g., Brown and Gearhart (1971). In this method
a deflated map G : RV \ {29} — RY is defined by G1(x) = G(z)/||z — zo||.
One then applies an iterative method to try to find a zero point of G;.
Numerical experience with deflation has shown that it is often a matter of
seeming chance whether one obtains an additional solution and if one is
obtained, it is very often not the one which is nearest to zg.

By utilizing homotopy-type methods we can give some conditions which
will guarantee the existence of an additional solution and yield insights into
the behaviour of deflation. This additional solution will lie on a homotopy
path. We illustrate this approach with a discussion of the d-homotopy. Let
us consider the homotopy map Hg : RY x R — R defined by

Hy(z,A) :=G(z) — \d

where d € R" is some fixed vector with d # 0. Since we assume that
a zero point 2 is already given, we have H4(zp,0) = 0. Let us further
assume zero is a regular value of G. Then it follows from Sard’s theorem
that zero is also a regular value of Hy for almost all d € RY. In order
to ensure that the solution curve ¢ in H;!(0) which contains (2o, 0) again
reaches the level A = 0, we need to impose a boundary condition. The
following proposition uses a boundary condition which is motivated by a
simple degree consideration.

Proposition 4.3 Let the following hypotheses hold:

1. G :RY — R" is a smooth map with zero as a regular value;

2. d € RV \ {0} is a point such that the homotopy H also has zero as a
regular value;

3.  C RY is a bounded open set which contains a (known) initial zero
point 2 of G;

4. the boundary condition Hy(z,\) = G(z)~ Ad # 0 holds for all z € 59,

AER;
Then the curve c in H;'(0) which contains (zo, 0) intersects the level Q x {0}
an even number of times at points (2;,0), i = 0,...,n, at which G(z;) = 0.

See (11.5.3) in Allgower and Georg (1990) for a proof. Any two zero points
of G which are consecutively obtained by traversing the curve ¢ have opposite
index. Allgower and Georg (1983b) have shown that this d-homotopy can
be viewed as a continuous version of the deflation technique of Brown and
Gearhart.

4.4. Polynomial systems

In the preceding section we considered the task of computing multiple zero
points of general smooth maps. In the case of complex polynomial systems
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it is actually possible to compute (at least in principle) all of the zero points
by means of homotopy methods. This subject has received considerable
attention in recent years. The book of Morgan (1987) deals exclusively with
this topic, using the path following approach. It also contains a number of
interesting applications to robotics and other fields.

We consider a system of complex polynomials P : C* — C". The task is to
find all solutions of the equation P(z) = 0. If a term of the kth component
P, of P has the form

az{'zy? - 20",
then its degree is 71 + ro + ... + r,. The degree di of Pj is the maximum
of the degrees of its terms. The homogeneous part P of P is obtained
by deleting in each component Pj all terms having degree less than dj.
The homogenization P of P is obtained by multiplying each term of each
component P with an appropriate power z{ such that its degree is dy. Note
that the homogenization P : C**1 — C™ involves one more variable zq. If

(wo,...,wn) #0
is a zero point of P, then the entire ray
[wo : -+ s wy] = {(§wo, ..., Ew,) | £ € C}

consists of zero points of P. Usually, [wp : - - - : wy] is regarded as a point in

the complex projective space CP™. There are two cases to consider:

1 The solution [wg : -+ : wy] intersects the hyperplane zq = 0 trans-
versely, i.e. without loss of generality, wo = 1. This corresponds to a
zero point (w1, ...,wy) of P. Conversely, each zero point (wy,...,w,)
of P corresponds to a solution [1:wj : ---: wy] of P.

2 The solution [wg : --- : wy] lies in the hyperplane zg = 0, i.e. wy =
0. This corresponds to a nontrivial solution [wy : --- : wp] of the
homogeneous part P, and such solutions are called zero points of P at
infinity.

As in the case of one variable, it is possible to define the multiplicity of
a solution. The higher dimensional analogue of the fundamental theorem
of algebra is Bezout’s theorem, which states that the number of zero points
of P (counting their multiplicities and zeros at infinity) equals the product
d =djds - - d,, provided all solutions are isolated.

Garcia and Zangwill (1979b) and Chow, Mallet-Paret and Yorke (1979)
introduced homotopy methods in C™ x R for finding all solutions of the
equation P = 0. Wright (1985) realized that their approaches could be
simplified by going into the complex projective space CP". We use his
approach to illustrate the homotopy idea for polynomial systems.

Define a homotopy H = (Hj,..., H,) by involving the homogenization P
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of P via
Hi(20,- -+ 2y A) = (1 = A)(apzi* — bezd®) + APi(20, - - - , 2n)-

Wright shows by Sard-type arguments that for almost all coefficients ax, by €
C the restricted homotopies H /) which are obtained from H by fixing z;=1
for j = 0,...,n have zero as a regular value for A\ < 1. He concludes that
for A < 1, the homogeneous system of polynomials H has exactly d simple
zero point curves ¢;(A) € CP™, i = 1,...,d, in complex projective n-space.
On the trivial level A = 0, the d solutions are obvious, and it is possible
to trace the d curves emanating from these solutions into the direction of
increasing A. The solution curves are monotone in A, and hence all have to
reach the target level A = 1 on the compact manifold CP". Thus, in this
approach solutions at infinity are treated no differently than finite solutions.
The solution curves are traced in the projective space CP", and from the
numerical point of view we have the slight drawback that occasionally a
chart in CP™ has to be switched.

Recently, attention has been given to the task of trying to formulate
homotopies which eliminate the sometimes wasteful effort involved in trac-
ing paths which go to solutions of P(z1,...,2,) = 0 at infinity. Work in this
direction has been done in Morgan (1986), Li, Sauer and Yorke (1987, 1989)
and Li and Wang (1992a,b). Morgan and Sommese (1987) describe the eas-
ily implemented ‘projective transformation’ which allows the user to avoid
the drawback of changing coordinate charts on CP™. Morgan and Sommese
(1989) show how to exploit relations among the system coefficients, via
‘coefficient parameter continuation’. Such relations occur commonly in eng-
ineering problems, as described in Wampler and Morgan (1991), Wampler,
Morgan and Sommese (1990, 1992). The papers (Morgan, Sommese and
Wampler, 1991-1992) combine a homotopy method with contour integrals
to calculate singular solutions to polynomial and nonlinear analytic systems.
Morgan, Sommese and Watson (1989) documented that HOMPACK, see Wat-
son, Billups and Morgan (1987), in the case of polynomial systems has some
stability issues that CONSOL8, see Morgan (1987), does not have. The path
following approach to systems of polynomial equations is particularly suited
for parallel processing, see Allison, Harimoto and Watson (1989).

4.5. Nonlinear eigenvalue problems, bifurcation

Path following methods are frequently applied in numerical studies of bifur-
cation problems. Up to this point we have assumed that zero is a regular
value of the smooth mapping H : R¥V+1 — RY. However, bifurcation points
are singular points on H~!(0) and hence, if path following algorithms are
applied, some special adaptations are required. Generally, bifurcation points
are defined in a Banach space context, see for example the book by Chow
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and Hale (1982). In the case that H represents a mapping arising from a
discretization of an operator of the form H : E; x R — E5 where Ey and E»
represent appropriate Banach spaces, it is usually of interest to approximate
bifurcation points of the operator equation H = 0. Often one can make the
discretization H in such a way that the resulting discretized equation H = 0
also has a corresponding bifurcation point. Under reasonable assumptions
of nondegeneracy it is possible to obtain error estimates for the bifurcation
point of the original problem H = 0. Such studies are presented in the pa-
pers by Brezzi, Rappaz and Raviart (1980a,b, 1981), Crouzeix and Rappaz
(1990), Fink and Rheinboldt (1983, 1984, 1985) and Liu and Rheinboldt
(1991).

Since we are primarily concerned with bifurcation in the numerical curve
following context, we confine our discussion to the case of the finite dimen-
sional (discretized) equation H = 0. However, we note that the theoretical
discussion later will essentially extend to the Banach space context if we
assume that H is a Fredholm operator of index one. We will discuss how
certain types of bifurcation points along a solution curve ¢ can be detected,
and having detected a bifurcation point, how one can numerically switch
from ¢ onto a bifurcating branch.

Some of the fundamental results on the numerical solution of bifurcation
problems are due to Keller (1970), see also Keener and Keller (1974) and
Keller (1977). The recent literature on the numerical treatment of bifur-
cation is very extensive. For an introduction into the field we suggest the
lecture notes of Keller (1987). See also the two articles by Doedel, Keller
and Kernévez (1991a,b) which discuss the use of the software package AUTO.
For surveys and bibliography we suggest the recent book by Seydel (1988)
and the recent proceedings (Mittelman and Roose, 1989; Roose, de Dier and
Spence, 1990; Seydel, Schneider, Kiipper and Troger, 1991). Most authors
study bifurcation problems in the context of a nonlinear eigenvalue problem

H(z,A\) =0,

where A is the eigenvalue parameter which usually has some physical sig-
nificance. Conventionally, the solution branches are parametrized accord-
ing to A\. We have taken the viewpoint that the solution branches c; are
parametrized with respect to the arclength. There is only one essential
difference, namely that the former approach also considers folds with res-
pect to A as singularities.

Such folds are frequently of intrinsic interest, and there are special algo-
rithms for detecting and calculating them. We omit this subject here for
reasons of space limitations, and refer the interested reader to, e.g., Bol-
stad and Keller (1986), Chan (1984b), Fink and Rheinboldt (1986, 1987),
Melhem and Rheinboldt (1982), Ponisch and Schwetlick (1981), Schwetlick
(1984ab) and Ushida and Chua (1984).
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A standard approach to the determination of bifurcation or other singular
points is to directly characterize such points by adjoining additional equa-
tions to H = 0 and handling the resulting new set of equations by some
special iterative method. In this context, continuation methods often are
used to obtain starting points for these direct methods, see, e.g., Griewank
(1985), Moore and Spence (1980) and Yang and Keller (1986). A hybrid
method for handling unstable branches has been developed by Shroff and
Keller (1991).

Mittelmann and collaborators have made extensive applications of path
following and bifurcation methods in the context of minimal surfaces, free
boundary problems, obstacle problems and variational inequalities, see, e.g.,
Hornung and Mittelmann (1991), Maurer and Mittelmann (1991), Mierse-
mann and Mittelmann (1989-1992) and Mittelmann (1990).

In view of the extensive literature we can only touch upon the problem
here, and we will confine our discussion to the task of detecting a simple
bifurcation point along a solution curve ¢ and effecting a branch switching
numerically. We will see that the detection of simple bifurcation points
requires only minor modifications of predictor—corrector algorithms. A more
detailed discussion along these lines can be found in Chapter 8 of Allgower
and Georg (1990). Let us begin by defining a bifurcation point.

Definition 4.4 Suppose that ¢ : J — RY*! is a smooth curve, defined
on an open interval J containing zero, and parametrized (for reasons of
simplicity) with respect to arc length such that H(c(s)) =0 for s € J. The
point ¢(0) is called a bifurcation point of the equation H = 0 if there exists
an € > 0 such that every neighbourhood of ¢(0) contains zero points z of H
which are not on ¢(—¢,¢€).

An immediate consequence of this definition is that a bifurcation point of
H = 0 must be a singular point of H. Hence the Jacobian H'(c(0)) must
have a kernel of dimension at least two. We consider the simplest case:

Definition 4.5 A point @ € RV is called a simple bifurcation point of
the equation H = 0 if the following conditions hold:
1. H(a) = 0;
2. dimker H'() = 2;
3. e*H” (a)’(ker H'(@))? has one positive and one negative eigenvalue.
where e spans ker H'(%)*.

Using the well known Liapunov—-Schmidt reduction, the following theorem
can be shown, which is essentially a restatement of a famous result from
Crandall and Rabinowitz (1971).

Theorem 4.6 Let @ € RV*! be a simple bifurcation point of the equa-
tion H = 0. Then there exist two smooth curves ci(s),ca(s) € RV+L,
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parametrized with respect to arclength s, defined for s € (—¢,¢) and ¢
sufficiently small, such that the following holds:

1. H(ci(s)) =0, 1 € {1,2}, s € (—¢,¢),;

2. Cz(O) =q,1€ {1,2},;

3. ¢1(0), ¢2(0) are linearly independent;

4. H71(0) coincides locally with range (c;) Urange (cz), more precisely: @
is not in the closure of H~1(0) \ (range(c;) U range(cz)).

By differentiating the equation e*H(c;(s)) = 0 twice and evaluating the
result at s = 0, we obtain the following

Lemma 4.7 Let @ € RVY*! be a simple bifurcation point of the equation
H =0. Then

1. ker H'(u) = span{¢;(0), é2(0)},
2. e*H"(u)[¢;(0), ¢;(0)] = 0 for ¢ € {1, 2}.

The following theorem reflects the well known fact, see Krasnosel’skif
(1964) or Rabinowitz (1971), that simple bifurcation points cause a switch
of orientation along the solution branches. This furnishes a numerically im-
plementable criterion for detecting a simple bifurcation point when travers-
ing one of the curves ¢;. For a proof, see, e.g., Theorem (8.1.14) in Allgower
and Georg (1990).

Theorem 4.8 Let @ € RV*! be a simple bifurcation point of the equation
H = 0. Then the determinant of the following augmented Jacobian

e (L0

&i(s)*
changes sign at s =0 for 7 € {1,2}.

This theorem implies that when traversing a solution curve ¢, a simple
bifurcation point is detected by a change in orientation. Depending upon
the method used to perform the decomposition of the Jacobian during path
following, this orientation can often be calculated at very small additional
cost. A predictor—corrector algorithm generally has no difficulty in jumping
over, i.e. proceeding beyond the bifurcation point @. That is, Keller (1977)
has shown that for sufficiently small steplength h, the predictor point will
fall into the ‘cone of attraction’ of the Newton corrector. See Jepson and
Decker (1986) for further studies.

Conversely, suppose that a smooth ¢ in H~1(0) is traversed and that c(0)
is an isolated singular point of H such that the determinant changes sign at
s = 0, then using a standard argument in degree theory, see Krasnosel’skif
(1964) or Rabinowitz (1971), it can be shown that c¢(0) is a bifurcation point
of H = 0. However, ¢(0) is not necessarily a simple bifurcation point.
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Multiple bifurcations often arise from symmetries with respect to certain
group actions, i.e. H satisfies an equivariance condition

H(yz,)) = vH(z, ’\)

for v in a group I'. See the books by Golubitsky and Schaeffer (1985), Gol-
ubitsky, Stewart and Schaeffer (1988) and Vanderbauwhede (1982). These
symmetries can also be exploited numerically, see, e.g., , Allgower, Bohmer
and Mei (1991a,b), Allgower, Béhmer, Georg and Miranda (1992b), Cliffe
and Winters (1986), Dellnitz and Werner (1989), Georg and Miranda (1990,
1992), Jepson, Spence and Cliffe (1991), Healey (1988-1989), Healey and
Treacy (1991) and Hong (1991); see also the proceedings (Allgower, Bohmer
and Golubitsky, 1992a). As this partial list suggests, there is currently very
much interest in this topic. However, constraints on our available space
prohibits a detailed discussion.

The determinant in Theorem 4.8 is only the simplest example of a so-called
test function. Such test functions are real functions defined on a neighbour-
hood of the curve ¢ and are monitored during path following to reveal certain
types of singular points by a change of sign. In the case of Hopf bifurca-
tion, the determinant is not an adequate test function. Recently, several
authors have proposed and studied classes of test functions for various types
of singular points, see, e.g., Dai and Rheinboldt (1990), Garratt, Moore and
Spence (1991), Griewank and Reddien (1984), Seydel (1991b) and Werner
(1992). A different approach for the prediction of singular points along the
path c has been given by Huitfieldt and Ruhe (1990).

Switching branches via perturbation. In the previous section we have
seen that it is possible to detect and jump over simple bifurcation points
while numerically tracing a solution curve c via a predictor—corrector meth-
od. The more difficult task is to numerically branch off onto the second
solution curve at the detected bifurcation point #. The simplest device
for branching off numerically rests upon Sard’s theorem (4.1). If a small
perturbation vector d € RY is chosen at random, then the probability that
d is a regular value of H is unity. Of course, in this case H~!(d) has
no bifurcation point. Since d € RY is chosen so that ||d|| is small, the
solution sets H~1(0) and H~1(d) are close together. On H ~!(d), no change
of orientation can occur. Therefore, corresponding solution curves in H ~1(d)
must branch off near the bifurcation point #. It is easy to implement this
idea, see, e.g., Allgower and Chien (1986), Allgower, Chien, Georg and Wang
(1991c), Chien (1989), Georg (1981) and Glowinski, Keller and Reinhart
(1985).

Recently, an interesting variation on this idea has been proposed by Huit-
fieldt (1991). He introduces an additional parameter on the perturbation
and an additional constraint equation to obtain the branch connecting equa-
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tion

Blu, 1) = ( Hw+rd ) ~0, (4.2)

||u—ﬁ||2+'r2 —€

where 4 is an approximation to the bifurcation point %. Such approximations
are easily obtained via path following together with test function monitoring
as described earlier. Note the relationship between this homotopy and the
d-homotopy discussed in Section 4.3 in connection with finding multiple
solutions.

It is not difficult to see that for almost all d and € > 0, zero is a regular
value of B, provided that @ is an isolated singular point of H in H~1(0). Let
us assume that such a generic choice of d and € has been made.

Then the solution manifold B~1(0) splits into one or more simple closed
curves of the form (b(s), 7(s)). For 7(s) = 0 we obtain H(b(s)) = 0. Hence
the curves connect points in the intersection of H ~!(0) with the sphere
|lu—1||? = 2. Starting points for a path following of (b(s), 7(s)) are available
from the tracing of the current solution curve ¢ of H = 0. Let b; = b(s;),
i =0,1,..., be successively obtained points such that 7(s;) = 0. It remains
to be demonstrated that b; and b;; are on different solution branches of the
equation H = 0.

Since this seems to have been omitted in the paper of Huitfieldt (1991),
we sketch a proof. It is easily seen that the determinant of the matrix

H'(b(s)) d
(b(s) —@)* 7(s)
b(s)*  7(s)

never changes sign since it never becomes singular. By multiplying this

matrix on the right with
Id b(s)
0* 7(s)

we obtain
H'(b(s)) O
(b(s) —a)* 0
b(s)* 1

Since 7(s;) changes sign for successive i, we obtain that the determinant of

(%)

changes sign for successive 7. Under reasonable assumptions this implies that
t(H'(bi+1)) points out of the sphere ||u — 4|2 = €2 if +(H'(b;)) points into
it. For a simple bifurcation point (or more generally for a bifurcation point
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hich is detected by a change of determinant in the sense of Theorem 4.8),
is means that b; and b;y; cannot lie on the same solution branch.
Huitfeldt reports very successful numerical tests on some interesting prob-
ms of applied mathematics: the Taylor problem, and the von Karman plate
juations. In his experiments he succeeded in obtaining all of the bifurcating
ranches at several multiple bifurcation points, i.e. the 1-manifold B—1(0)
as connected in all cases he considered. However, it does not seem that
1is should always be the case. Advantages of this approach are that no a
riori information concerning the multiplicity of the bifurcation is needed,
nd that it enjoys better numerical stability properties than ordinary per-
wrbation. It should, however, be emphasized that any existing symmetries
:ading to higher multiplicities ought to be taken into account initially, i.e.
y using group actions in the formulation of the problem, see Golubitsky et
l. (1988) and other references cited earlier.

jranching off via the bifurcation equation. Although the branching
ff via perturbation techniques works effectively, this approach can have
ome shortcommings. In general, it cannot be decided in advance which
f the two possible directions along the bifurcating branch will be taken.
‘urthermore, if the perturbation vector d is not chosen correctly (and it is
ot always clear how this is to be done), one may still have some difficulty
a tracing the resulting path. The solution set H ~!(0) can be approximated
iear the bifurcation point % only after an additional bifurcating branch has
)een approximated.

To obtain an approximation of H ~1(0) near a simple bifurcation point ,
he alternative is a direct approach. This may consist of two steps, see, e.g.,
jection 8.3 of Allgower and Georg (1990):

Approximation of the bifurcation point @ by adjoining additional equa-
tions to H = 0 and handling the resulting new set of equations by some
special iterative method.

. Construct a numerical model for the so-called bifurcation equation in
order to approximate all tangents of the bifurcating branches in .
Lemma 4.7 describes such an equation for the case of a simple bifur-
cation point. The approaches in Keller (1977, 1987) and Rheinboldt
(1978) deal with this idea.

§.6. Complez bifurcation

[t has been observed by Allgower (1984) and Allgower and Georg (1983a)
that folds in the A coordinate of solution curves of H(z,A) = 0 lead to
bifurcation points in a setting of complex extension, see also Section 11.8
of Allgower and Georg (1990). This observation can be used to connect
separated real components of H~'(0), and hence may serve as a tool to
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find additional solutions of the equation H = 0. Henderson (1985) and
Henderson and Keller (1990) study complex bifurcation in a general Banach
space setting. Let us briefly summarize one of their main results.

Let B be a real Banach space which can be complexified into B & iB.
We use the notation z = z + iy for z € B @ iB and z,y € B. We consider
B to be naturally embedded into B @ iB via £ — z + i0. In most cases
which occur in applications, e.g. function spaces, the precise meaning of this
setting is obvious. _

Consider a smooth nonlinear problem of the form

H(z,\) =H(z+ iy,\) =0, H:B® iBxR— B@ iB, (4.3)

where H is analytic in the complex variable z = = + iy. Furthermore, we
assume that H is real for real arguments, and denote the restriction to real
arguments by Hgr, i.e. AR : B xR — B.

Let ¢(s) = (z(s), A(s)) be a solution curve of (the real) equation Hg =0
consisting of regular points. We assume that ¢(0) is a simple fold, i.e.

A(0) =0, X(0)#0. (4.4)

Then ¢(0) is a simple bifurcation point of (the complex) equation H = 0.
In fact, it can be seen that for the bifurcating curve

c1(s) = (z1(s) + iya(s), Mi(s))

the following characterization holds at s = 0, see Proposition (11.8.16) of
Allgower and Georg (1990):

#1(0) =0, $1(0) = ££(0), A (0) =0, X (0)=—X0).

Proposition 2.1 in Li and Wang (1992b) generalizes this result to complex
folds.

4.7. Linear eigenvalue problems

In recent years many of the classical problems of numerical linear algebra
have been re-examined in the context of homotopies and path following.
One of the earliest contributors has been Chu (1984-1991). In these pa-
pers iterative processes and matrix factorizations have been studied in the
context of flows satisfying various differential equations. A typical example
is the Toda flow which has been studied as a continuous analogue of the
QR algorithm. A survey of these ideas has been given by Watkins (1984).
According to Watkins, although it seems that the Toda flow and related
flows yield insight into the workings of algorithms, they do not necessarily
directly offer algorithms which are competitive with standard library algo-
rithms that have been developed and polished over numerous years.
Surprisingly, Li and Li (1992), Li and Rhee (1989), Li, Zeng and Cong
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(1992) and Li, Zhang and Sun (1991) have been able to construct special
implementations of homotopy methods which are now at least competitive
with the library routines of EISPACK and IMSL for linear eigenvalue prob-
lems.

The versatility of homotopy methods also permits their application to
generalized eigenvalue problems, see Chu, Li and Sauer (1988) and non-
symmetric matrices, see Li and Zeng (1992) and Li et al. (1992). In this
case complex eigenvalues are likely to arise, and it is necessary to invoke the
idea of complex bifurcation, see Section 4.6.

As an example, let us briefly discuss the homotopy approach given by Li et
al. (1991). Consider a real symmetric tridiagonal matrix A. We assume that
A is irreducible, since otherwise one off-diagonal element A[i+1,3] = A[i,i+
1] would vanish and the matrix A would split into two blocks which can be
treated independently. We consider a homotopy H : RY xRx[0,1] — RY xR
defined by

Az —[(1—8)D + sAjz )
z*z —1 )

H(z,\,8) = (

Here D is a real symmetric reducible tridiagonal matrix which is generated
from A by setting some of the off-diagonal entries of A to zero. The simplest
example for D would be to set all off-diagonal entries to zero. However, it is
advantageous to only reduce D to tridiagonal block structure with relatively
small blocks, e.g. of size < 50. This technique is referred to as divide and
conquer.

Since A(s) := (1 — 8)D + sA is irreducible for all s > 0, the solution set
of H = 0 consists of 2n disjoint smooth curves c (eigenpaths) which can be
parametrized with respect to s. Note that s is not the arclength, but the
homotopy parameter. Hence

c(s) = (£z(s),A(s)) for0<s<1.

The curves obviously occur in pairs, and only one of each pair needs to be
traced. At the level s = 0, initial values on the curves can be obtained by
approximating all eigenvectors and eigenvalues of all small blocks in D. If D
is diagonal, this is trivial, and otherwise a QR routine has to be employed.

Let us sketch a typical step of the predictor-corrector method. We note
first that it follows from differentiation of H(c(s)) = 0 with respect to s that

A(8) = z(s)*(A — D)z(s). (4.5)

Assume that (z(s), A(s)) is (approximately) known. After having decided
on a stepsize h (we are not going to discuss this feature), a predicted eigen-
value A(s+ h) is obtained from this differential equation by a two-step ODE
method. Now a predicted eigenvector Z(s + h) is obtained by one step of
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the inverse power method with shift, i.e. solve
(A(s +h) = A(s + B)Id)y = z(s) fory

and set Z(s + h) = y/||y||- Then a Rayleigh quotient iteration is performed
as a corrector to approximate (z(s + h), A(s + h)).

There are some stability problems for the case that different eigenvalues
become close. Sturm sequences are computed to stabilize the procedure.

Let us finally note that this homotopy method has an order-preserving
property, i.e. different A-paths can never cross. Hence the jth eigenvalue
of A can be calculated without calculating any other eigenvalues. This is
very often an advantageous feature for applications. On the other hand,
the homotopy method lends itself conveniently to parallelization, since each
solution path can be traced independently of the others and hence also
simultaneously.

4.8. Parametric programming problems

Parametric programming problems and sensitivity analysis can also be stud-
ied in the context of continuation methods. Consider the problem

min{f(z,a) : ¢i(z,a) =0, i € E, ¢i(z,a) <0, i € I}, (4.6)
where f,c; : R"t! — R are smooth functions. Here
E={1,...,q} and I={g¢+1,...,q+p}

denote the index sets for the equality and inequality constraints, respectively.
The local sensitivity of such systems has been analysed, e.g., in Fiacco (1983,
1984) and Robinson (1987). Many authors have used bifurcation and singu-
larity theory to investigate the local behaviour and persistence of minima at
the singular points of this system, see, e.g., Bank, Guddat, Klatte, Kummer
and Tammer (1983), Gfrerer, Guddat and Wacker (1983), Gfrerer, Guddat,
Wacker and Zulehner (1985), Guddat, Guerra Vasquez and Jongen (1990),
Guddat, Jongen, Kummer and Nozicka (1987), Jongen, Jonker and Twilt
(1983, 1986), Jongen and Weber (1990), Kojima and Hirabayashi (1984) and
Poore and Tiahrt (1987, 1990). Rakowska, Haftka and Watson (1991) dis-
cuss algorithms for tracking paths of optimal solutions. Lundberg and Poore
(1993) report on a numerical implementation of a path following method for
this problem. Our discussion is motivated by their exposition.

The Fritz John first-order necessary conditions for (4.6) imply the exis-
tence of (), v) € RP*? x R such that

Lo(z,\v,a) =0, 4.7
¢i(z,a) =0, i€E, (4.8)
dici(z,0) =0, iel, (4.9)

v2>20, ¢(z,0) 0, X 2>0,7€l, (4.10)
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where L(z, \,v,a) = vf(z,a) + 3 Aici(z, ) is the Lagrangian.
Now an active set strategy is implemented by using the following homo-
topy equation for a path following algorithm:

L, (:l?, {Ai}iGA’V7 a)
H(IB, {Ai}iGAﬂ/a a) = c,'(a:,a), i€ A =0,
vP+yaZ-1

where A is the set of active constraints. Hence A includes all of the indices E
and some of the indices I. During the path following procedure, this active
set is adapted in such a way that the inequalities (4.10) are respected.

There are various technical difficulties (such as handling singularities or
efficiently adapting the active set) which have to be overcome in order to
create a successful implementation.

(4.11)

4.9. Linear and quadratic programming

Khachiyan (1979) started a new class of polynomial time algorithms for solv-
ing the linear programming problem. Karmarkar (1984) subsequently gave
a much noted polynomial time algorithm based upon projective rescaling.
Gill, Murray, Saunders, Tomlin and Wright (1986) noted that Karmarkar’s
algorithm is equivalent to a projected Newton barrier method which in turn
is closely related to a recent class of polynomial time methods involving a
continuation method, namely the tracing of the ‘central path’. This last
technique can be extended to quadratic programming problems, and both
linear and nonlinear complementarity problems. Typically, algorithms of
this nature are now referred to as interior point methods.

The presentation of a continuous trajectory (central path) of the iterative
Karmarkar method was extensively studied by Bayer and Lagarias (1989),
see also Sonnevend (1985). Megiddo (1988) related this path to the classical
barrier path of nonlinear optimization (Fiacco and McCormick, 1968). Sev-
eral authors have proposed algorithms that generally follow the central path
to a solution, see, e.g., Renegar (1988a), Gonzaga (1988), Vaidya (1990),
Kojima, Mizuno and Yoshise (1988, 1989) and Monteiro and Adler (1989).

To make the algorithms more efficient, variable steplength and/or higher
order predictor algorithms have been proposed in Adler, Resende, Veiga
and Karmarkar (1989), Mizuno, Todd and Ye (1992) and Sonnevend, Stoer
and Zhao (1989, 1991). The algorithm of Mizuno et al. (1992) has subse-
quently been shown by Ye, Giiler, Tapia and Zhang (1991) to have both
polynomial time complexity and quadratic convergence. Kojima, Megiddo
and Mizuno (1991a) think that there still remain differences between the the-
oretical primal-dual algorithms which enjoy global and/or polynomial-time
convergence and the efficient implementations of primal-dual algorithms,
see, e.g., Marsten, Subramanian, Saltzman, Lustig and Shanno (1990) and
McShane, Monma and Shanno (1989).
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Adler et al. (1989) report extensive computational experiments for an in-
terior point implementation with solution times being in most cases less than
those required by a state-of-the-art simplex method MINOS, see Murtagh
and Saunders (1987). Karmarkar and Ramakrishnan (1991) report com-
putational experience on large scale problems which are representative of
large classes of applications of current interest. Their interior point imple-
mentation incorporates a preconditioned conjugate gradient method as a
corrector step and is consistently faster than MINOS by orders of magni-
tude. Further computational experience comparing an interior point method
0B1 and a simplex method CPLEX is reported in technical reports Bixby,
Gregory, Lustig, Marsten and Shanno (1991), Carpenter and Shanno (1991)
and Lustig, Marsten and Shanno (1991). Polak, Higgins and Mayne (1992)
have given an algorithm for solving semi-infinite minimax problems which
bears a resemblance to the interior penalty function methods. They report
numerical results which show that the algorithm is extremely robust and its
performance is at least comparable to that of current first-order minimax
algorithms.

There is currently immense activity in studying and developing imple-
mentations of interior point algorithms. It is to be expected that our brief
account will be outdated in a few years. For further details and literature, we
refer to the recent surveys of Gonzaga (1992), Kojima, Megiddo, Noma and
Yoshise (1991c), Todd (1989), Wright (1992), and the proceedings edited by
Roos and Vial (1991). As an example, we outline the central path approach
for a primal-dual linear programming problem, following the introductory
parts of Monteiro and Adler (1989) and Mizuno et al. (1992).

Consider the following linear programming problem and its corresponding
dual form:

Problem 4.9
n;in{c*:c Az =b, z > 0}, (4.12)
m;m.x{b*y cA'y+2z=c¢, 220}, (4.13)

We make the following standard assumption.

Assumption 4.10 The rank of A equals the number of its rows, and the
interior feasible set of the primal-dual problem

Fo:={(z,2) : x,2 >0, Ax =b, A*y+ z = c for some y}

is not empty.

It is well established that the linear programming problem has a unique
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solution under these assumptions. The logarithmic barrier function method
associated with Problem 4.9 is

3 * .. —
mz;n{c z—uzj:lnz].Aa:—b, a:>0}, (4.14)

where ¢ > 0 is the barrier penalty parameter. Under Assumption 4.10,
the logarithmic barrier function is strictly convex and has a unique minimal
point z(u) for all g > 0. Moreover, z(x) tends to the unique solution of
Problem 4.9 as p tends to zero.

The Karush-Kuhn—Tucker optimality condition which characterizes the
solution z(u) can be expressed in the following way: (z(u), 2) must belong
to the set

C := {(z,2) € F°: diag(z)z = pe}, (4.15)

where e denotes the column of ones. In fact, C is parametrized by p and
is commonly called the central path of the problem. It turns out that y is
related to the so-called duality gap: c¢*z — b*y = £*2 via

z*

n

z

p= (4.16)

for (z,z) € C, where n is the number of columns of A.

From these remarks, it is clear that the objective now is to follow the
central path C as u tends to zero. In fact, most interior point methods can be
viewed, one way or another, as a special path following method along these
lines. The methods differ in the choice of predictor step, corrector procedure
(usually one or several Newton type iterations) and predictor steplength
control. Many papers discussing such methods or introducing new methods
also contain a sophisticated complexity analysis, see, for example, Section 6.

These interior point algorithms typically require a phase I in which a
feasible starting point is generated. A somewhat different approach is taken
by Freund (1991) who introduces a shifted barrier function approach so that
the need for phase I is obviated.

Finally, this technique is quite general and can be extended to quadratic
programming problems and linear and nonlinear complementarity problems,
see, e.g., Kojima, Megiddo and Ye (1992). The literature on interior methods
is rapidly increasing, and the subject has become one of the major topics
of mathematical programming. In our opinion, it is only a question of time
until the venerable simplex methods will be superceded by interior point
implementations.
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5. Piecewise-linear methods

Up to now we have assumed that the map H : R"*! — R" was smooth. Next
we will discuss piecewise-linear methods which can again be viewed as curve
tracing methods, but which can be applied to nonsmooth situations. The
piecewise-linear methods trace a polygonal path which is obtained by succes-
sively stepping through certain ‘transversal’ cells of a piecewise-linear man-
ifold. The first and most prominent example of a piecewise-linear algorithm
was designed by Lemke and Howson (1964) and Lemke (1965) to calculate a
solution of the linear complementarity problem, see Section 5.2. This algo-
rithm played a crucial role in the development of subsequent piecewise-linear
algorithms. Scarf (1967) gave a numerically implementable proof of the
Brouwer fixed point theorem, based upon Lemke’s algorithm. Eaves (1972)
observed that a related class of algorithms can be obtained by considering
piecewise-linear approximations of homotopy maps. Thus the piecewise-
linear continuation methods began to emerge as a parallel to the classical
embedding or predictor—corrector methods.

The piecewise-linear methods require no smoothness of the underlying
equations and hence have, at least in theory, a more general range of ap-
plicability than classical embedding methods. In fact, they can be used to
calculate fixed points of set-valued maps. They are more combinatorial in
nature and are closely related to the topological degree, see Peitgen and
Siegberg (1981). Piecewise-linear continuation methods are usually consid-
ered to be less efficient than the predictor—-corrector methods when the latter
are applicable, especially in higher dimensions. The reasons for this lie in
the fact that steplength adaptation and exploitation of special structure are
more difficult to implement for piecewise-linear methods.

Eaves (1976) has given a very elegant geometric approach to general piece-
wise-linear methods, see also Eaves and Scarf (1976). We adopt this point
of view and cast the notion of piecewise-linear algorithms into the general
setting of subdivided manifolds which we will call piecewise-linear manifolds.
Our exposition follows the introduction of Georg (1990) to some extent.

Let E denote some ambient finite dimensional Euclidean space which
contains all points arising in the sequel. A half-space 1 and the corre-
sponding hyperplane On are defined by n = {y € E : z*y < o} and
on = {y € E : z*y = a}, respectively, for some z € E with £ # 0 and
some a@ € R. A finite intersection of half-spaces is called a cell. If o is a
cell and ¢ a half-space such that ¢ C € and 7 := 0 N ¢ + @, then the cell
T is called a face of 0. For reasons of notation we consider o also to be a
face of itself, and all other faces are proper faces of 0. The dimension of
a cell is the dimension of its affine hull. In particular, the dimension of a
singleton is 0 and the dimension of the empty set is —1. If the singleton {v}
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is a face of o, then v is called a vertex of 0. If 7 is a face of o such that
dim7 = dimo — 1, then 7 is called a facet of o.

Definition 5.1 A piecewise-linear manifold of dimension n is a system
M # 0 of cells of dimension n such that the following conditions hold:

1. If 04,09 € M, then g1 N gy is a common face of o1 and 5.
2. A cell 7 of dimension n — 1 can be a facet of at most two cells in M.
3. The family M is locally finite, i.e. any relatively compact subset of

M|:= ] o (5.1)

oEM
meets only finitely many cells ¢ € M.

The simplest example of a piecewise-linear manifold is R™ subdivided into
unit cubes with integer vertices.

We introduce the boundary AM of M as the system of facets which are
common to exactly one cell of M. Generally, we cannot expect AM to
again be a piecewise-linear manifold. However, this is true for the case that
|M| is convex. Two cells which have a common facet 7 are called adjacent.
We say that one cell is pivoted into the other cell across the facet r. We will
see that piecewise-linear algorithms perform pivoting steps.

Typical for piecewise-linear path following is that only one current cell is
stored in the computer, along with some additional data, and the pivoting
step is performed by calling a subroutine which makes use of the data to
determine an adjacent cell which then becomes the new current cell.

A cell of particular interest is a simplex o = [v1,v2,...,vp+1] of dimension
n which is defined as the convex hull of n + 1 affinely independent points
V1,2,...,Unt+1 € E. These points are the vertices of o. If a piecewise-linear
manifold M of dimension n consists only of simplices, then M is called a
pseudo manifold of dimension n. Such manifolds are of special importance,
see, e.g., Gould and Tolle (1983) and Todd (1976a). If a pseudo manifold
T subdivides a set |T|, then we also say that 7 triangulates |T|. Some
triangulations of R™ of practical importance had been previously considered
by Coxeter (1934) and Freudenthal (1942), see also Todd (1976a). Eaves
(1984) gave an overview of standard triangulations.

A simple triangulation can be generated by the following pivoting rule,
see Allgower and Georg (1979) or Coxeter (1973): if

o =[v1,v2,...,i...,Vn41]
is a simplex in R"®, and 7 is the facet opposite a vertex v;, then o is pivoted
across T into & = [v1,v2,...,D;...,Un+1] by setting

Vi+1 + Vi1 — Y for 1<i<n+1,
Ui ={ Vg4 Upt1 — V1 for i=1,
Up + V1 — Upy1 for i=n+1.
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In fact, a minimal (nonempty) system of n-simplices in R™ which is closed
under this pivoting rule is a triangulation of R”.

Let M be a piecewise-linear manifold of dimension n + 1. We call H :
|M| — R™ a piecewise-linear map if the restriction H, : 0 — R" of H to o is
an affine map for all ¢ € M. In this case, H, can be uniquely extended to
an affine map on the affine space spanned by o. The Jacobian H/ has the
property H! (z —y) = H,(z) — Hy(y) for z,y in this affine space. Note that
under an appropriate choice of basis H/ corresponds to an (n,n + 1)-matrix
which has a one-dimensional kernel in case of nondegeneracy, i.e. if its rank
is maximal.

A piecewise-linear algorithm is a method for following a polygonal path
in H~1(0). To avoid degeneracies, we introduce a concept of regularity, see
Eaves (1976). A point = € (M| is called a regular point of H if z is not
contained in any face of dimension < n, and if H, has maximal rank n for
all facets 7. A value y € R" is a regular value of H if all points in H~!(y) are
regular. By definition, y is vacuously a regular value if it is not contained
in the range of H. If a point or value is not regular it is called singular.
An analogue of Sard’s theorem 4.1 holds, see, e.g., Eaves (1976) or Peitgen
and Siegberg (1981) for details. This enables us to confine ourselves to
regular values. We note that degeneracies could be handled via the concept
of lexicographical ordering, see Dantzig (1963) and Todd (1976a).

Hence, for reasons of simplicity, we assume that all piecewise-linear maps
under consideration here have zero as a regular value. This implies that
H~1(0) consists of polygonal paths whose vertices are always in the interior
of some facet. If o is a cell, then o N H~1(0) is a segment (two endpoints),
a ray (one endpoint) or a line (no endpoint). The latter case is not of
interest for piecewise-linear path following. A step of the method consists
of following the ray or segment from one cell into a uniquely determined
adjacent cell. The method is typically started at a point of the boundary or
on a ray (coming from infinity), and it is typically terminated at a point of
the boundary or in a ray (going to infinity). The numerical linear algebra
required to perform one step of the method is typical for linear programming
and usually involves n? operations for dense matrices (at least in the case
that the cells are simplices).

Nearly all piecewise-linear manifolds M which are of importance for prac-
tical implementatiens, are orientable. If M is orientable and of dimension
n+1, and if H : M — R" is a piecewise-linear map, then it is possible to
introduce an index for the piecewise-linear solution manifold H ~!(0) which
has important invariance properties and occasionally yields some useful in-
formation, see Eaves (1976), Eaves and Scarf (1976), Lemke and Grotzinger
(1976), Shapley (1974) and Todd (1976¢). It should be noted that this index
is closely related, see, e.g., Peitgen (1982), to the topological index which
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is a standard tool in topology and nonlinear analysis. Occasionally, index
arguments are used to ensure a certain behaviour of the solution path.

We now give some examples of how the piecewise-linear path following
methods are used.

5.1. Piecewise-linear homotopy algorithms

Let us first show how these ideas can be used to approximate a fixed point
of a continuous bounded map f : R® — R" by applying piecewise-linear path
following to an appropriate piecewise-linear homotopy map. Eaves (1972)
presented the first such method. A restart method based on somewhat simi-
lar ideas was developed by Merrill (1972). A number of authors have studied
the efficiency and complexity of piecewise-linear homotopy algorithms, see,
e.g., Alexander (1987), Eaves and Yorke (1984}, Saigal (1977, 1984), Saigal
and Todd (1978), Saupe (1982), Todd (1982) and Todd (1986).

As an example of a piecewise-linear homotopy algorithm, let us sketch
the algorithm of Eaves and Saigal (1972). We consider a triangulation T
of R™ x (0, 1] into (n + 1)-simplices o such that every simplex is contained
in some slab R™ x [27%,2%~1] for k = 0,1,.... Let us call the maximum
of the last coordinates of all vertices of o the level of 0. We call T a re-
fining triangulation if for o € 7, the diameter of o tends to zero as the
level of o tends to zero. The first such triangulation was proposed by Eaves
(1972). Todd (1976a) gave a triangulation with refining factor 1/2. Subse-
quently, many triangulations with arbitrary refining factors were developed,
see Eaves (1984).

Consider the homotopy

H(z,\) =z — Azg — (1 - N)f(z).

The idea is to follow a solution path from (z¢,1) to (Z,0) where zg is the
starting point of the method and z is a fixed point of f we wish to approxi-
mate. However, there are no smoothness assumptions on f, and therefore a
more subtle path following approach involving piecewise-linear approxima-
tions is required. _

We denote by H the piecewise-linear map which interpolates H on the
vertices of the given refining triangulation 7. Then it is possible to follow
the polygonal solution path c(s) = (z(s), A(s)) in H ~1(0) starting at c(0) =
(zo,1). For convenience we regard c¢ to be parametrized by arclength 0 <
s < 89 < 0o. From the boundedness of the map f it follows that A(s) tends
to zero as s tends to sg. Furthermore,

lim Jlz(s) ~ f(z(s)] = 0.

Since z(s) remains bounded as s tends to sg, this implies that every accu-
mulation point of z(s) is a fixed point of f.
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These ideas can be extended to set-valued maps.

5.2. Lemke’s algorithm

The first and most prominent example of a piecewise-linear algorithm was
designed by Lemke (1965) and Lemke and Howson (1964) in order to cal-
culate a solution of the linear complementarity problem. Subsequently, sev-
eral authors have studied complementarity problems from the standpoint of
piecewise-linear homotopy methods, see, e.g., Kojima (1974, 1979), Kojima,
Nishino and Sekine (1976), Saigal (1971, 1976) and Todd (1976b). Comple-
mentarity problems can also be considered from an interior point algorithm
viewpoint, see Section 4.9, hence by following a smooth path, see, e.g.,
Kojima, Mizuno and Noma (1990b), Kojima, Mizuno and Yoshise (1991d),
Kojima, Megiddo and Noma (1991b), Kojima, Megiddo and Mizuno (1990a)
and Mizuno (1992).

We present the Lemke algorithm as an example of a piecewise-linear al-
gorithm since it played a crucial role in the development of subsequent
piecewise-linear algorithms. Let us consider the following linear comple-
mentarity problem: Given an affine map g : R® — R”, find an z € R" such
that

z€R}; g(z)eRy; =z*g(x)=0.

Here R, denotes the set of nonnegative real numbers, and in the sequel we
also denote the set of positive real numbers by R, .. If g(0) € R}, then
z = 0 is a trivial solution to the problem. Hence this trivial case is always
excluded and the additional assumption

9(0) ¢ R}

is made. Linear complementarity problems arise in quadratic programming,
bimatrix games, variational inequalities and economic equilibria problems,
and numerical methods for their solution have been of considerable interest,
see, e.g., Cottle (1974), Cottle and Dantzig (1968), Cottle, Golub and Sacher
(1978) and Lemke (1980). See also the proceedings (Cottle, Gianessi and
Lions, 1980) for further references.

For x € R™ we introduce the positive part z, € R} by setting efz, :=
max{e}z,0}, ¢ = 1,...,n and the negative part z_ € R} by z_ := (—z),.
The following formulae are then obvious: z =24 —z_, (z4)*(z-) = 0.

It is not difficult to show the following: Define f : R — R” by f(2) :=
g(z4+) — z_. If z is a solution of the linear complementarity problem, then
z = — g(z) is a zero point of f. Conversely, if z is a zero point of f, then
Z := z4 solves the linear complementarity problem.

The advantage which f provides is that it is obviously a piecewise-linear
map if we subdivide R™ into orthants. This is the basis for our description
of Lemke’s algorithm. For a fixed d € R}, we define the homotopy H :
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R™ x [0,00) — R™ by
H(z,A) := f(z) + A\d.
For a given subset I C {1,2,...,n} an orthant can be written in the form
or:={(z,\): A>0, ez >0foriel, ez <0fori¢l}.

The collection of all such orthants forms a piecewise-linear manifold M (of
dimension n + 1) which subdivides R™ x [0, 00). Furthermore it is clear that
H : M — R” is a piecewise-linear map since x — x, switches its linearity
character only at the coordinate hyperplanes.

Let us assume for simplicity (as usual) that zero is a regular value of H.
Lemke’s algorithm is started on a ray: if A > 0 is sufficiently large, then

(-9(0)=Ad), =0 and (-—g(0)—Ad)_=g(0)+ d€R},,

and consequently
H(—g(0)—Ad, \) =0.

Hence, the ray defined by

A € [Ag,00) —> —g(0) — Md € 0 (5.2)
for Ag:= Jmax, %&)[ﬂ (5.3)

is used (for decreasing A-values) to start the path following. Since the
piecewise-linear manifold M consists of the orthants of R™ x [0,00), it is
finite, and there are only two possibilities:

1. The algorithm terminates on the boundary |0M| = R™ x {0} at a point
(2,0). Then z is a zero point of f, and hence 2, solves the linear

complementarity problem.
2. The algorithm terminates on a secondary ray. Then it can be shown, see

Cottle (1974), that the linear complementarity problem has no solution,
at least if the Jacobian g’ belongs to a certain class of matrices.

5.8. Variable dimension algorithms

In recent years, a new class of piecewise-linear algorithms has attracted con-
siderable attention. They are called variable dimension algorithms since
they all start from a single point, a zero-dimensional simplex, and succes-
sively generate simplices of varying dimension, until a so-called completely
labelled simplex is found. Numerical results from Kojima and Yamamoto
(1984) indicate that these algorithms improve the computational efficiency of
piecewise-linear homotopy methods. The first variable dimension algorithm
is due to Kuhn (1969). However, this algorithm had the disadvantage that
it could only be started from a vertex of a large triangulated standard sim-
plex S, and therefore piecewise-linear homotopy algorithms were preferred.
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By increasing the sophistication of Kuhn’s algorithm considerably, van der
Laan and Talman (1979) developed an algorithm which could start from any
point inside S. It soon became clear, see Todd (1978), that this algorithm
could be interpreted as a homotopy algorithm. Numerous other variable
dimension algorithms were developed. Some of the latest are due to Dai,
Sekitani and Yamamoto (1992), Dai and Yamamoto (1989), Kamiya and
Talman (1990), Talman and Yamamoto (1989). Two unifying approaches
have been given, one due to Kojima and Yamamoto (1982), the other due
to Freund (1984a,b). A variable dimension algorithm which is easy to com-
prehend and may serve the reader as a gateway is the octrahedral algorithm
of Wright (1981).

5.4. Approzimating manifolds

The emphasis of this survey is on path following methods. We should note,
however, that the ideas of predictor—corrector and piecewise-linear curve
tracing can be extended to the approximation of implicitly defined manifolds
H~1(0) where H : RN+K —, RN, Limitations of space preclude a detailed
discussion.

There are two basic types of algorithms: one is the moving frame algo-
rithm of Rheinboldt (1987), see also Rheinboldt (1988b), which is a higher
dimensional analogue of the predictor—corrector method, the other is a piece-
wise-linear algorithm which has been developed in Allgower and Gnutz-
mann (1987), Allgower and Schmidt (1985), Gnutzmann (1989), Widmann
(1990a,b), see also Chapter 15 of Allgower and Georg (1990).

The moving frame algorithm involves predictors that arise from a local
triangulation of the tangent space at a current point. The corrector consists
of a Newton-like method for projecting the generated mesh back to the
manifold. This method is well-suited for smooth manifolds in which the
dimension N is large, such as in multiple parameter nonlinear eigenvalue
problems, see, e.g., Rheinboldt (1988b, 1992a). It has been applied to the
calculation of fold curves and to differential-algebraic equations, see Dai and
Rheinboldt (1990) and Rheinboldt (1986, 1991, 1992b).

So far, it has not been possible to make the moving frame algorithm
global in the sense that a compact manifold is approximated (without holes
or overlaps) by a piecewise-linear compact manifold. The latter task can be
accomplished by the application of piecewise-linear algorithms. However,
these algorithms become extremely costly for large N. The piecewise-linear
algorithms have been applied to the visualization of body surfaces, see All-
gower and Gnutzmann (1991), and to the approximation of surface and
body integrals, see Allgower, Georg and Widmann (1991d). They can also
be used as automatic mesh generators for boundary element methods, see
Georg (1991).
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6. Complexity

In modern complexity investigations of continuation-type methods the so-
called a-theory of Smale (1986) is a convenient tool. This theory is closely
related to the classical Kantorovich estimates for Newton iterations, see,
e.g., Ortega and Rheinboldt (1970) and Deuflhard and Heindl (1979). In
contrast to the Kantorovich estimates, Smale’s estimates are based on in-
formation at only one point, involving however all derivatives. The maps
under consideration have to be analytic.

On the other hand, an analytic map is characterized by all its derivatives
at one point. In fact, Rheinboldt (1988a) showed that Smale’s estimates
can be derived from the Kantorovich estimates. However, for complexity
considerations, it is more convenient to have all the relevant information
situated at only one point. Let us briefly present Smale’s estimates and
show how they are used for complexity discussions. Our presentation is
based on the introductory parts of the papers of Shub and Smale (1991)
and Renegar and Shub (1992).

Let E, F be complex Banach spaces and f : E — F an analytic map. It
would be possible to assume that f is given only on some open domain, but
for reasons of simplicity of exposition we assume f to be defined on all of
E. Then for each point z € E such that Df(z) : E — F is an isomorphism
the following quantities are defined:

B(fa) = IDF@ ™ f@), (61)
Wfa) = sup HIDFE) D @YD, (62)
alfia) = B3, (63)
Ny@) = z-Dj(z)"f(z). (6.4)

Note that N(z) is the Newton iterate of z. It it also convenient to introduce
the notation

Nfe(z) = ,ll.rf,loN}(x) (6.5)

provided Newton’s method started at z is convergent.
A related one-dimensional ‘control’ Newton method is occasionally gen-
erated from the following family of functions
t?

haa(t) = f—t+ 7T (6.6)

For 0 < o < 3—2v/2 = 0.1716, the function hg_ has two real positive roots,
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the smaller one being

() _ (a+1)—\/(a+1)2—8a. (6.7)

gl 4y
Moreover, h% . > 0 on the interval (0, 1/7). Thus, Newton’s method starting
at zero generates a strictly increasing sequence t;(3,7) = ,’;B N (0) converg-

ing to this root.

Occasionally, a slightly smaller upper bound for « is used, namely ag =
1(13 — 3V/17) = 0.1577.

The following is a modification of Smale’s a-theorem.

Theorem 6.1 Letzg€ E,a = a(f,zo), vy =7(f,z0). If a < ap = 0.1577,
then the iterates z;11 = Ny(z;) are defined and converge to a zero point
Too = N7°(20) € E with the rate

2i-1
lzivs —zill < (3) lla1 = ol

Moreover, the following estimates hold:

(@)

T\&X) — O
oo — aoll < %2, oo — aal] < TR 2

An easy consequence is
Corollary 6.2 ||z, — z;|| < € fori > 1+ log|log (a)/e7]|.

Furthermore, by using the control Newton iterates t; = t;(,7), a stricter
estimate can be obtained under the same hypotheses:

Theorem 6.3 |z; — z;—1| < t; —ti—1.

Another property which is important for complexity discussions is the fact
that «a is upper semi-continuous, more precisely:

Proposition 6.4 Let ¥(u) := 2u®? — 4u + 1 and u := (£, zo)||zo — z.
Then
a(f7 L":0)(1 —' u) tu
P(u)? '
From the previous proposition it is possible to obtain a uniform estimate
for Newton steps:

o(f,z) <

Theorem 6.5 There are universal constants & ~ 0.0802 and u =~ 0.0221
with the following property: Let ¥ > 0 and z,{ € E. If 5(f,{) < &/ and
lz — ¢l < @/7, then [|Nf(z) — N (Ol < /7.

This theorem is used to investigate the complexity of path following in
the following way: Let H : [0,1] x E — F be a continuous (homotopy)
map which is analytic in the second argument. We further assume that a
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continuous solution path ¢ : [0,1] — F exists, i.e. H(t,{(t)) =0for ¢ € [0, 1],
such that the derivative H¢(t,{(t)) is an isomorphism. The following crude
path-following method can be designed: choose a subdivision 0 =tg < t; <
-+ <ty = 1 and define

xT; = NH(ti,.)(zi—l) for i = 1, ey k. (68)

It is clear that this method follows the solution curve if ||zo — ¢(0)| and
|t; — t;—1| are small enough. Of course, the crucial number for complexity
considerations is the number k of Newton steps involved in this embedding
method. If it is wished to obtain some points of the solution curve with high
accuracy, then the complexity described in Corollary 6.2 has to be added.

The preceding analysis immediately furnishes a tool to determine the es-
timates necessary for a successful tracing of the solution curve:

Theorem 6.6 Let ||zg — ((0)|| < @/7, and let the mesh ¢; be so fine that
B(H(t;, .),¢(ti—1)) < &/7 and y(H (t;, .),{(ti=1)) < 4. Then the embedding
method (6.8) follows the solution path (. In fact, ||z; — {(t;)|| < @/7.

To summarize, we have outlined a program for approaching complexity
investigations when Newton steps are the primary tool of path following
methods. As can be seen from the last theorem, the success of the approach
depends heavily on the availability of estimates B(H(%, .),{(s)) < Ci|t — 3|
and y(H(t, .),((s)) < Ca|t — s| with explicit constants C; and Ca.

This program was carried out by Shub and Smale (1991) for the case of
a homotopy method for calculating all solutions of a system of polynomial
equations (Bezout’s theorem). A previous effort along similar lines was
described by Renegar (1987).

Recently, this approach has also been used by Renegar and Shub (1992) for
a unified complexity analysis of various interior methods designed for solving
linear and convex quadratic programming problems. They obtain and re-
derive various ‘polynomial time’ estimates. The linear programming barrier
method was first analysed by Gonzaga (1988). The quadratic programming
barrier method was analysed by Goldfarb and Liu (1991). A primal-dual
linear programming algorithm was investigated by Kojima et al. (1988) and
Monteiro and Adler (1989). The algorithm has roots in Megiddo (1988).
Primal-dual linear complementarity and quadratic programming algorithms
were discussed by Kojima et al. (1989) and Monteiro and Adler (1989).
All of these algorithms follow the central trajectory studied by Bayer and
Lagarias (1989) and Megiddo and Shub (1989). For the case of the linear
complementarity problem, Mizuno, Yoshise and Kikuchi (1989) present sev-
eral implementations and report computational experience which confirms
the polynomial complexity.

This discussion involved path following methods of Newton type. Renegar
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(1985), see also Renegar (1988b), has made complexity investigations for
piecewise-linear path following methods.

7. Available software

We conclude the paper by listing some available software related to path
following and indicate how the reader might access these codes. No attempt
to compare or evaluate the various codes is offered. In any case, our opinion
is that path following codes always need to be considerably adapted to the
special purposes for which they are designed. The path following literature
offers various tools for accomplishing such tasks. Although there are some
general purpose codes, probably none will slay every dragon.

Rheinboldt, Roose and Seydel (1990) present a list of features and options
that appear to be necessary or desirable for continuation codes. This should
be viewed as a guideline for people who want to create a new code.

Several of the codes can be accessed via netlib: The best way to obtain
them is to ftp into netlib@research.att.com, login as netlib, password =
your e-mail address. It is also possible to e-mail to netlib by writing send
indez. Information on how to proceed will then be e-mailed back to you.

7.1. ALCON

This sofware package has been written by Deuflhard, Fiedler and Kunkel
(1987). ALCON is a continuation method for algebraic equations f(z,7) =
0, based on QR factorization as a solver for the arising equations in the
Gauss—Newton iteration of the corrector step. Turning points and simple
bifurcations can be computed on demand. It can be found in the electronic
library of the Konrad Zuse Zentrum fiir Informationstechnik in Berlin. The
reader may telnet or ftp to sc.ZIB-Berlin.de (130.73.108.11) and login under
the user identification elib, no password is required. The sources can be
found in the directory /pub/ELIB/codelib either in unpacked form or as a
tar.Z file.

7.2. AUTO

This is a software package written by E. Doedel. It is mainly intended
to investigate bifurcation phenomena. There is a charge of $175 for the
software, a manual by Doedel and Kernévez (1986) is also available, contact:
S. K. Shull, Applied Mathematics, 217-50, California Institute of Technology,
Pasadena, CA 91125, USA. Telephone: (818) 356-4560.

7.8. BIFPACK

This package has been written by Seydel (1991a). It is meant primarily
for bifurcation analysis of ODEs. This is not a public domain software.
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However, as a research tool, it is freely distributed for noncommercial use,
except for a $20 contribution for handling. Indicate whether you prefer
BIFPACK on 5.25 in or on 3.5 in diskette (1.4 MB, DOS double-density).
Contact: Professor Riidiger Seydel, Abt. Mathematik VI, Universitat Ulm,
Postfach 4066, W - 7900 Ulm, Germany.

e-mail: seydel@rz.uni-ulm.dbp.de

7.4. CONKUB

This is an interactive program for continuation and bifurcation of large sys-
tems of nonlinear equations written by Mejia (1986), see also Mejia (1990).
It is currently available from him via e-mail:

rayChelix.nih.gov.

7.5. DERPAR

This package was written by Kubi¢ek (1976), and Holodniok and Kubitek
(1984). This is a Fortran subprogram for the evaluation of the dependence
of the solution of a nonlinear system on a parameter. The modified method
of Davidenko, which applies the Implicit Function Theorem, is used in com-
bination with Newton’s method and Adam’s integration formulae. The pro-
gram can be accessed via netlib, see number 502 in the directory toms.

7.6. HOMPACK

This is a suite of FORTRAN 77 subroutines for solving nonlinear systems
of equations by homotopy methods, written by L. T. Watson, see Watson et
al. (1987). There are subroutines for fixed point, zero finding, and general
homotopy curve tracking problems, utilizing both dense and sparse Jacobian
matrices, and implementing three different algorithms: ODE-based, normal
flow and augmented Jacobian. The program can be accessed via netlib under
the directory hompack. See also number 652 in the directory toms.

7.7. LOCBIF

A. Khibnik and collaborators in Moscow have developed several codes for
path following and bifurcation analysis. CYCLE is a one-parameter continua-
tion program for limit cycles. LINLBF has been designed for multi-parameter
bifircation analysis of equilibrium points, limit cycles, fixed points of maps,
respectively. LOCBIF is an interactive program built originally on the top of
LINLBF. People interested in trying this software should contact A. Khibnik
via e-mail:

na.khibnik@na-net.ornl.gov.
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7.8. OB1

This interior point method has been written by I. J. Lustig, R. E. Marsten
and D. F. Shanno. The version of 0B1 that implements a primal-dual algo-
rithm for linear programming is available in source code form to academics
from Roy Marsten at Georgia Tech. This is the December 1989 version,
also known as the WRIP (Workshop on Research in Programming) ver-
sion. The current version of OB1 is commercial. It implements a primal-dual
predictor—corrector algorithm for linear programming and is available from
XMP Software at prices ranging from $15,000 to $100,000: XMP Software,
Suite 279, Bldg 802, 930 Tahoe Blvd, Incline Village, NV 89451, phone:
(702) 831- 4XMP, e-mail:

tlowe@mcimail.com

7.9. PATH

This software package for dynamical systems was originally coded in FOR-
TRAN 77 by Kaas-Petersen (1989), and is currently modified to include a
graphical interface. According to the workers at the Technical University of
Denmark, it seems to be able to handle much larger systems of ODE’s than
AUTO. For more details and availability, readers may contact Michael Rose
via e-mail:

lamfmr@lamf.dth.dk.

7.10. PITCON

This is a Fortran subprogram for continuation and limit points, written
by Rheinboldt and Burkardt (1983b), see also Rheinboldt and Burkardt
(1983a). It is used for computing solutions of a nonlinear system of equations
containing a parameter. The location of target points where a given variable
has a specified value can be located. Limit points are also identified. It uses
a local parameterization based on curvature estimates to control the choice
of parameter value. The program can be accessed via netlib under the
directory contin. See also number 596 in the directory toms.

7.11. PLALGO

This is a software for piecewise-linear homotopy methods developed by Todd
(1981). It can be obtained from him via e-mail:

miketoddQorie.cornell.edu.

No support is available, and he says that on-line documentation is weak,
although he can send a hard copy.
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7.12. plask

This is a C program, written by Widmann (1990a), for triangulating sur-
faces in R3 which are implicitly defined, see Section 5.4. It incorporates mesh
smoothing and some other features. It is particularly suited for mesh gen-
eration (e.g. for boundary element methods) and for visualization purposes.
The program can be obtained via e-mail:

Georg@Math.ColoState.Edu.

7.18. PLTMG

This package has been written by R. E. Bank, see also Bank and Chan
(1986). It solves elliptic partial differential equations in general regions of the
plane. It features adaptive local mesh refinement, multigrid iteration, and
a pseudo-arclength continuation option for parameter dependencies. The
package includes an initial mesh generator and several graphics packages.
Full documentation can be obtained in the PLTMG User’s Guide by R. E.
Bank, available from SIAM publications via e-mail:

SIAMPUBS@wharton.upenn.edu.

The program can be accessed via netlib under the directory pltmg.

7.14. Last and least

The book Allgower and Georg (1990) contains several Fortran codes for
path following which are to be regarded primarily as illustrations. The
intention was to encourage the readers to experiment and be led to make
improvements and adaptations suited to their particular applications. We
emphasize that these programs should not be regarded as programs of library
quality. They can be obtained via e-mail:

Georg@Math.ColoState.Edu.
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